22538 measured reflections

 $R_{\rm int} = 0.039$

4926 independent reflections 3496 reflections with $I > 2\sigma(I)$

mm

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Butylamino-3-(4-fluorophenyl)-6,8diphenyl-3,5,6,8-tetrahydro-4H-thiopyrano[4',3':4,5]thieno[2,3-d]pyrimidin-4-one

Wen-Jing Li,* Rong Li, Wen-Qin Wang and Ying Zhong

Key Laboratory of Pesticides & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China Correspondence e-mail: flyteach2003@yahoo.com.cn

Received 12 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.063; wR factor = 0.218; data-to-parameter ratio = 13.6

In the title molecule, $C_{31}H_{28}FN_3OS_2$, the two fused rings of the thieno[3,2-d]pyrimidine group form a dihedral angle of $4.99 (12)^{\circ}$, and the benzene ring of the 4-fluorophenyl group forms a dihedral angle of $77.44 (15)^{\circ}$ with the pyrimidine ring. The thiopyran ring is in a half-chair conformation. The crystal packing is stabilized by weak intermolecular C-H···N hydrogen bonds and weak π - π interactions with a centroidcentroid distance of 3.900 (1) Å. The C atoms of the n-butyl group are disordered over two sites with approximate occupancies of 0.60 and 0.40.

Related literature

The preparation and biological activity is described by Walter (1999a,b). For related literature, see: Ding et al. (2004); Allen et al. (1987); Janiak (2000).

Experimental

Crystal data

$C_{31}H_{28}FN_3OS_2$	V = 2828.8 (5) Å ³
$M_r = 541.68$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 12.9430 (10) Å	$\mu = 0.22 \text{ mm}^{-1}$
b = 19.2323 (15) Å	T = 294 (2) K
c = 11.9433 (19) Å	$0.20 \times 0.10 \times 0.10$
$\beta = 107.916 \ (2)^{\circ}$	

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\rm min}=0.957,\;T_{\rm max}=0.978$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.063$	6 restraints
$wR(F^2) = 0.218$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
4926 reflections	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
361 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - \mathbf{H} \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $C5 - H5 \cdot \cdot \cdot N2^i$ 0.98 2.60 3.507 (4) 154

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek. 2003): software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2571).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.
- Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Walter, H. (1999a). PCT Int. Appl. No. 44.
- Walter, H. (1999b). PCT Int. Appl. No. 89.

Acta Cryst. (2007). E63, o4869 [doi:10.1107/S1600536807060850]

2-Butylamino-3-(4-fluorophenyl)-6,8-diphenyl-3,5,6,8-tetrahydro-4*H*-thiopyrano[4',3':4,5]thieno[2,3-*d*]pyrimidin-4-one

W.-J. Li, R. Li, W.-Q. Wang and Y. Zhong

Comment

Thienopyrimidine derivatives are great inoptrance because of their remarkable biological properties, including antibacterial, antiallergic and antiinflammatory (Walter, 1999*a*,b). In recent years, we have been engaged in the prepation of heterocyclic derivatives containing a fused pyrimidinone system using an aza-Wittig reaction (Ding *et al.*, 2004). We present here the structure of one such thiopyranothieno[2,3-*d*]pyrimidine derivative, (I) (Fig. 1), which has potential for use as a precursor for obtaining bioactive molecules. The bond lengths and angles are unexceptional (Allen *et al.*, 1987). The thieno (A), the pyrimidinone (B) and the C6—C11 phenyl (C), the C12—C17 phenyl (D), the C22—C27 benzene (E), rings are essentially planar and the dihedral angles between them are A/B = 4.99 (12)°, A/C = 67.4 (2)°, A/D = 82.2 (2)°, B/E = 77.44 (15)°. The thiopyrano ring is in a half-chair conformation [φ =213.6 (3)° and θ =130.6 (3)°, Puckering Amplitude =0.622 (2) Å]. Atoms C29, C30, C31 and attached hydrogen atoms are disordered over two sites, with refined occupancies of 0.396 (7) and 0.604 (7). Intermolecular C—H···N hydrogen bonds appear to be effective in stabilizing the crystal structure (Fig. 2, Table 1). Further stability is provided by offset π - π stacking interactions (Janiak, 2000) of symmetry related S2/C3/C4/C18/C19 rings (symmetry code: 1 - x, -y, 1 - z), with an interplanar distance of 3.578 (1)Å and a centroid-to-centroid distance of 3.900 (1).

Refinement

All H atoms were located in difference maps and treated as riding atoms, with N—H = 0.86 Å, $U_{iso} = 1.2U_{eq}$ (N) for NH, C—H = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for Csp^2 , C—H = 0.98 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH, C—H = 0.97 Å, $U_{iso} = 1.2U_{eq}$ (C) for CH₂, C—H = 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.

Fig. 2. The packing in the crystal structure, showing the C—H…N hydrogen bonds as dashed lines.

2-Butylamino-3-(4-fluorophenyl)-6,8-diphenyl-3,5,6,8-tetrahydro- 4H-thiopyrano[4',3':4,5]thieno[2,3*d*]pyrimidin-4-one

Crystal data

$C_{31}H_{28}FN_3OS_2$	$F_{000} = 1136$
$M_r = 541.68$	$D_{\rm x} = 1.272 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 7165 reflections
a = 12.9430 (10) Å	$\theta = 2.3 - 26.6^{\circ}$
<i>b</i> = 19.2323 (15) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 11.9433 (19) Å	T = 294 (2) K
$\beta = 107.916 \ (2)^{\circ}$	Block, colorless
$V = 2828.8 (5) \text{ Å}^3$	$0.20\times0.10\times0.10~mm$
Z = 4	

Data collection

4926 independent reflections
3496 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.039$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.7^{\circ}$
$h = -15 \rightarrow 15$
$k = -22 \rightarrow 22$
$l = -14 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.063$	H-atom parameters constrained
$wR(F^2) = 0.218$	$w = 1/[\sigma^2(F_o^2) + (0.1581P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
4926 reflections	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -0.33 \ e \ {\rm \AA}^{-3}$
6 restraints	Extinction correction: none
Primary atom site location: structure invariant direct	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y C1 0.8214(2)0.6797(2)0.0546(7) 0.48052 (16) H10.7860 0.5241 0.6460 0.066* C2 0.7483 (2) 0.44333 (16) 0.7389(2) 0.0540(7) H2A 0.7838 0.4010 0.065* 0.7756 H2B 0.4729 0.8003 0.065* 0.7377 C3 0.6392(2)0.42529(13) 0.6531(2)0.0445 (6) C4 0.6206(2)0.41847 (13) 0.5352(2)0.0467 (6) C5 0.6986 (2) 0.0499(7) 0.42672 (14) 0.4652 (2) Н5 0.4239 0.6839 0.4714 0.060* C6 0.9332(3)0.49748 (18) 0.7595 (3) 0.0620(8) C7 0.9944 (3) 0.4521 (3) 0.8420 (3) 0.0891 (12) H7 0.9663 0.4086 0.8507 0.107* C8 1.0967 (4) 0.4700 (3) 0.9120 (4) 0.1054 (15) H8 1.1363 0.4382 0.9675 0.126* C9 1.1408 (4) 0.5315 (3) 0.9027 (4) 0.1058 (16) H9 1.2107 0.5424 0.9497 0.127* C10 1.0824 (5) 0.5770(4) 0.8244 (6) 0.151 (3) H10 1.1117 0.6203 0.8173 0.181* C11 0.9783 (4) 0.5607 (3) 0.7533 (5) 0.1189 (19) H11 0.9387 0.7005 0.143* 0.5937 0.6877 (2) C12 0.36995 (15) 0.3746 (2) 0.0498 (7) C13 0.6964 (3) 0.30109 (16) 0.4072 (3) 0.0716 (10) H13 0.7111 0.2893 0.4861 0.086* C14 0.2490(2)0.3238(3)0.6836(4)0.0862 (12) H14 0.6888 0.2026 0.3466 0.103* C15 0.2661 (2) 0.2081 (3) 0.0889 (13) 0.6632 (4) H15 0.6549 0.2312 0.1521 0.107* C16 0.6550(3) 0.3340(2) 0.1742 (3) 0.0833 (12) H16 0.6412 0.3453 0.0953 0.100* C17 0.6673 (3) 0.38626 (18) 0.2573 (3) 0.0640 (8) H17 0.6616 0.4326 0.2338 0.077* C18 0.0419 (6) 0.5413(2)0.41524 (13) 0.6844(2)C19 0.4515(2) 0.40394 (13) 0.5888(2)0.0456 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C20	0.5285 (2)	0.41069 (13)	0.7992 (2)	0.0443 (6)	
C21	0.3346 (2)	0.39246 (15)	0.6934 (2)	0.0497 (7)	
C22	0.4028 (2)	0.37698 (14)	0.9065 (2)	0.0473 (6)	
C23	0.3956 (2)	0.42682 (15)	0.9860 (2)	0.0528 (7)	
H23	0.4021	0.4736	0.9697	0.063*	
C24	0.3788 (3)	0.40724 (17)	1.0902 (3)	0.0625 (8)	
H24	0.3762	0.4402	1.1462	0.075*	
C25	0.3661 (3)	0.33909 (18)	1.1087 (3)	0.0667 (9)	
C26	0.3731 (3)	0.28827 (18)	1.0313 (3)	0.0728 (10)	
H26	0.3643	0.2417	1.0472	0.087*	
C27	0.3936 (3)	0.30789 (15)	0.9292 (3)	0.0617 (8)	
H27	0.4011	0.2744	0.8760	0.074*	
C28	0.1356 (3)	0.3866 (3)	0.6054 (4)	0.1014 (15)	
H28A	0.1406	0.4237	0.5523	0.122*	0.604 (7)
H28B	0.0760	0.3982	0.6353	0.122*	0.604 (7)
H28C	0.1492	0.4031	0.5345	0.122*	0.396 (7)
H28D	0.0800	0.4154	0.6209	0.122*	0.396 (7)
C29	0.1060 (9)	0.3233 (6)	0.5360 (7)	0.132 (3)	0.604 (7)
H29A	0.1650	0.3077	0.5081	0.159*	0.604 (7)
H29B	0.0420	0.3306	0.4688	0.159*	0.604 (7)
C30	0.0837 (12)	0.2715 (7)	0.6196 (11)	0.168 (4)	0.604 (7)
H30A	0.0338	0.2897	0.6586	0.202*	0.604 (7)
H30B	0.1498	0.2561	0.6780	0.202*	0.604 (7)
C31	0.0308 (18)	0.2126 (10)	0.5299 (17)	0.270 (10)	0.604 (7)
H31A	0.0860	0.1896	0.5053	0.405*	0.604 (7)
H31B	-0.0220	0.2326	0.4626	0.405*	0.604 (7)
H31C	-0.0041	0.1796	0.5666	0.405*	0.604 (7)
C29'	0.0978 (16)	0.3103 (7)	0.5937 (13)	0.132 (3)	0.396 (7)
H29C	0.1595	0.2819	0.5928	0.159*	0.396 (7)
H29D	0.0802	0.2984	0.6647	0.159*	0.396 (7)
C30'	0.0013 (13)	0.2882 (10)	0.4884 (16)	0.168 (4)	0.396 (7)
H30C	-0.0566	0.2739	0.5190	0.202*	0.396 (7)
H30D	-0.0241	0.3293	0.4408	0.202*	0.396 (7)
C31'	0.016 (2)	0.2310 (14)	0.406 (2)	0.231 (13)	0.396 (7)
H31D	-0.0515	0.2241	0.3447	0.346*	0.396 (7)
H31E	0.0364	0.1887	0.4500	0.346*	0.396 (7)
H31F	0.0711	0.2443	0.3726	0.346*	0.396 (7)
F1	0.3479 (2)	0.31934 (13)	1.21011 (16)	0.0997 (8)	
N1	0.41996 (19)	0.39625 (11)	0.79666 (19)	0.0470 (6)	
N2	0.34648 (19)	0.39482 (12)	0.58824 (19)	0.0496 (6)	
N3	0.2334 (2)	0.38759 (16)	0.7029 (2)	0.0711 (8)	
H3	0.2273	0.3849	0.7725	0.085*	
01	0.59961 (17)	0.41631 (10)	0.89348 (17)	0.0550 (5)	
S1	0.83816 (7)	0.42719 (5)	0.56027 (7)	0.0673 (3)	
S2	0.48421 (6)	0.40244 (4)	0.45975 (6)	0.0530 (3)	

Atomic displacement parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0575 (18)	0.0556 (18)	0.0530 (16)	-0.0068 (14)	0.0203 (13)	-0.0060 (12)
C2	0.0538 (17)	0.0595 (18)	0.0506 (15)	-0.0040 (14)	0.0190 (13)	-0.0061 (13)
C3	0.0528 (16)	0.0364 (14)	0.0466 (14)	0.0020 (11)	0.0188 (12)	-0.0001 (10)
C4	0.0539 (17)	0.0405 (14)	0.0480 (14)	0.0007 (12)	0.0192 (12)	-0.0021 (11)
C5	0.0592 (18)	0.0456 (16)	0.0488 (14)	-0.0017 (13)	0.0221 (13)	-0.0006 (11)
C6	0.0585 (19)	0.074 (2)	0.0582 (17)	-0.0113 (16)	0.0242 (14)	-0.0108 (15)
C7	0.058 (2)	0.111 (3)	0.090 (3)	-0.009(2)	0.0102 (19)	0.014 (2)
C8	0.067 (3)	0.148 (5)	0.091 (3)	-0.006 (3)	0.009 (2)	0.010 (3)
С9	0.068 (3)	0.158 (5)	0.086 (3)	-0.024 (3)	0.015 (2)	-0.033 (3)
C10	0.089 (4)	0.144 (5)	0.182 (6)	-0.054 (4)	-0.014 (4)	0.007 (4)
C11	0.095 (3)	0.111 (4)	0.120 (4)	-0.040 (3)	-0.011 (3)	0.021 (3)
C12	0.0574 (17)	0.0532 (17)	0.0459 (14)	-0.0032 (13)	0.0262 (13)	-0.0028 (12)
C13	0.117 (3)	0.0527 (19)	0.0595 (18)	-0.0032 (18)	0.0478 (19)	-0.0003 (14)
C14	0.134 (4)	0.056 (2)	0.087 (2)	-0.013 (2)	0.061 (3)	-0.0166 (18)
C15	0.119 (3)	0.083 (3)	0.082 (2)	-0.027 (2)	0.055 (2)	-0.036 (2)
C16	0.104 (3)	0.105 (3)	0.0460 (17)	-0.017 (2)	0.0309 (18)	-0.0122 (18)
C17	0.077 (2)	0.068 (2)	0.0514 (17)	-0.0019 (16)	0.0264 (16)	0.0066 (14)
C18	0.0420 (14)	0.0391 (14)	0.0463 (14)	0.0000 (11)	0.0162 (11)	-0.0006 (10)
C19	0.0510 (17)	0.0405 (14)	0.0465 (14)	0.0014 (12)	0.0166 (12)	0.0025 (10)
C20	0.0515 (16)	0.0370 (13)	0.0466 (14)	-0.0008 (11)	0.0182 (12)	-0.0035 (10)
C21	0.0478 (16)	0.0500 (17)	0.0530 (16)	0.0010 (12)	0.0179 (13)	0.0009 (12)
C22	0.0507 (16)	0.0470 (15)	0.0463 (14)	-0.0022 (12)	0.0179 (12)	-0.0016 (11)
C23	0.0610 (19)	0.0443 (16)	0.0569 (16)	0.0002 (13)	0.0237 (14)	-0.0050 (12)
C24	0.071 (2)	0.066 (2)	0.0547 (17)	-0.0014 (16)	0.0256 (16)	-0.0119 (14)
C25	0.082 (2)	0.073 (2)	0.0495 (16)	-0.0124 (17)	0.0271 (16)	0.0051 (15)
C26	0.100 (3)	0.0525 (19)	0.072 (2)	-0.0107 (17)	0.0353 (19)	0.0079 (15)
C27	0.086 (2)	0.0457 (16)	0.0592 (17)	-0.0053 (15)	0.0305 (16)	-0.0047 (13)
C28	0.050 (2)	0.174 (5)	0.078 (3)	-0.006 (3)	0.0180 (19)	0.017 (3)
C29	0.101 (5)	0.208 (10)	0.073 (6)	-0.018 (6)	0.005 (6)	-0.045 (7)
C30	0.148 (9)	0.126 (8)	0.206 (11)	-0.035 (7)	0.017 (7)	-0.010 (8)
C31	0.27 (2)	0.25 (2)	0.28 (2)	-0.034 (19)	0.07 (2)	-0.012 (19)
C29'	0.101 (5)	0.208 (10)	0.073 (6)	-0.018 (6)	0.005 (6)	-0.045 (7)
C30'	0.148 (9)	0.126 (8)	0.206 (11)	-0.035 (7)	0.017 (7)	-0.010 (8)
C31'	0.24 (3)	0.22 (3)	0.23 (3)	0.00 (2)	0.07 (3)	-0.03 (2)
F1	0.133 (2)	0.1177 (18)	0.0588 (11)	-0.0237 (15)	0.0443 (13)	0.0108 (11)
N1	0.0489 (14)	0.0494 (13)	0.0464 (12)	-0.0013 (10)	0.0201 (10)	-0.0026 (9)
N2	0.0431 (13)	0.0554 (14)	0.0492 (13)	-0.0015 (10)	0.0125 (10)	-0.0003 (10)
N3	0.0491 (16)	0.109 (2)	0.0588 (15)	-0.0030 (14)	0.0213 (12)	0.0037 (14)
01	0.0544 (12)	0.0664 (13)	0.0432 (10)	-0.0070 (10)	0.0136 (9)	-0.0076 (9)
S1	0.0562 (5)	0.0893 (7)	0.0620 (5)	-0.0049 (4)	0.0264 (4)	-0.0186 (4)
S2	0.0561 (5)	0.0612 (5)	0.0416 (4)	-0.0025 (3)	0.0150 (3)	-0.0022 (3)
Geometric para	meters (Å, °)					
		1 503 (4)	C21—N	2	1 313	(4)
21 20		1.202(1)	021 1	-	1.515	(.)

C1—C2	1.523 (4)	C21—N3	1.352 (4)
C1—S1	1.823 (3)	C21—N1	1.381 (4)
С1—Н1	0.9800	C22—C27	1.369 (4)
C2—C3	1.508 (4)	C22—C23	1.372 (4)
C2—H2A	0.9700	C22—N1	1.444 (3)
C2—H2B	0.9700	C23—C24	1.381 (4)
C3—C4	1.360 (4)	С23—Н23	0.9300
C3—C18	1.440 (4)	C24—C25	1.347 (5)
C4—C5	1.504 (4)	C24—H24	0.9300
C4—S2	1.745 (3)	C25—F1	1.357 (3)
C5—C12	1.513 (4)	C25—C26	1.367 (5)
C5—S1	1.814 (3)	C26—C27	1.378 (4)
С5—Н5	0.9800	С26—Н26	0.9300
C6—C11	1.360 (6)	С27—Н27	0.9300
C6—C7	1.372 (5)	C28—N3	1.432 (5)
С7—С8	1.375 (5)	C28—C29	1.457 (8)
С7—Н7	0.9300	C28—C29'	1.539 (10)
C8—C9	1.333 (7)	C28—H28A	0.9700
С8—Н8	0.9300	C28—H28B	0.9700
C9—C10	1.333 (8)	C28—H28C	0.9700
С9—Н9	0.9300	C28—H28D	0.9700
C10—C11	1.389 (7)	C29—C30	1.500 (9)
C10—H10	0.9300	С29—Н29А	0.9700
C11—H11	0.9300	С29—Н29В	0.9700
C12—C13	1.375 (4)	C30—C31	1.565 (10)
C12—C17	1.379 (4)	C30—H30A	0.9700
C13—C14	1.386 (4)	C30—H30B	0.9700
С13—Н13	0.9300	C31—H31A	0.9600
C14—C15	1.365 (6)	С31—Н31В	0.9600
C14—H14	0.9300	С31—Н31С	0.9600
C15—C16	1.360 (5)	C29'—C30'	1.535 (10)
C15—H15	0.9300	С29'—Н29С	0.9700
C16—C17	1.387 (5)	C29'—H29D	0.9700
C16—H16	0.9300	C30'—C31'	1.522 (10)
C17—H17	0.9300	С30'—Н30С	0.9700
C18—C19	1.373 (4)	C30'—H30D	0.9700
C18—C20	1.433 (4)	C31'—H31D	0.9600
C19—N2	1.369 (4)	С31'—Н31Е	0.9600
C19—S2	1.719 (3)	C31'—H31F	0.9600
C20—O1	1.221 (3)	N3—H3	0.8600
C20—N1	1.423 (4)		
C6—C1—C2	115.0 (2)	C22—C23—C24	119.8 (3)
C6—C1—S1	107.2 (2)	С22—С23—Н23	120.1
C2—C1—S1	109.8 (2)	С24—С23—Н23	120.1
С6—С1—Н1	108.2	C25—C24—C23	118.3 (3)
С2—С1—Н1	108.2	C25—C24—H24	120.8
S1—C1—H1	108.2	C23—C24—H24	120.8
C3—C2—C1	112.2 (2)	C24—C25—F1	118.8 (3)
C3—C2—H2A	109.2	C24—C25—C26	123.2 (3)

C1—C2—H2A	109.2	F1—C25—C26	118.0 (3)
C3—C2—H2B	109.2	C25—C26—C27	118.3 (3)
C1—C2—H2B	109.2	С25—С26—Н26	120.9
H2A—C2—H2B	107.9	С27—С26—Н26	120.9
C4—C3—C18	111.5 (2)	C22—C27—C26	119.6 (3)
C4—C3—C2	123.8 (3)	С22—С27—Н27	120.2
C18—C3—C2	124.7 (2)	С26—С27—Н27	120.2
C3—C4—C5	129.0 (3)	N3—C28—C29	119.1 (6)
C3—C4—S2	112.4 (2)	N3—C28—C29'	105.3 (7)
C5—C4—S2	118.5 (2)	C29—C28—C29'	29.7 (6)
C4—C5—C12	113.0 (2)	N3—C28—H28A	107.5
C4—C5—S1	111.24 (19)	C29—C28—H28A	107.5
C12—C5—S1	107.9 (2)	C29'—C28—H28A	136.5
С4—С5—Н5	108.2	N3—C28—H28B	107.5
С12—С5—Н5	108.2	C29—C28—H28B	107.5
S1—C5—H5	108.2	C29'—C28—H28B	89.2
C11—C6—C7	116.4 (4)	H28A—C28—H28B	107.0
C11—C6—C1	120.3 (3)	N3—C28—H28C	110.7
C7—C6—C1	123.2 (3)	C29—C28—H28C	82.1
C6—C7—C8	120.9 (4)	C29'—C28—H28C	111.7
С6—С7—Н7	119.6	H28A—C28—H28C	28.6
С8—С7—Н7	119.6	H28B—C28—H28C	128.6
C9—C8—C7	121.9 (5)	N3—C28—H28D	111.1
С9—С8—Н8	119.0	C29—C28—H28D	120.3
С7—С8—Н8	119.0	C29'—C28—H28D	109.1
C10—C9—C8	118.4 (5)	H28A—C28—H28D	84.7
С10—С9—Н9	120.8	H28B—C28—H28D	22.8
С8—С9—Н9	120.8	H28C—C28—H28D	108.9
C9—C10—C11	121.0 (5)	C28—C29—C30	104.2 (8)
С9—С10—Н10	119.5	С28—С29—Н29А	110.9
C11—C10—H10	119.5	С30—С29—Н29А	110.9
C6—C11—C10	121.3 (5)	С28—С29—Н29В	110.9
C6—C11—H11	119.3	С30—С29—Н29В	110.9
C10—C11—H11	119.3	H29A—C29—H29B	108.9
C13—C12—C17	118.7 (3)	C29—C30—C31	99.0 (12)
C13—C12—C5	120.8 (2)	С29—С30—Н30А	112.0
C17—C12—C5	120.6 (3)	С31—С30—Н30А	112.0
C12—C13—C14	120.8 (3)	С29—С30—Н30В	112.0
C12—C13—H13	119.6	С31—С30—Н30В	112.0
C14—C13—H13	119.6	H30A—C30—H30B	109.6
C15-C14-C13	119.7 (4)	C30'—C29'—C28	119.6 (12)
C15—C14—H14	120.1	C30'—C29'—H29C	107.4
C13—C14—H14	120.1	C28—C29'—H29C	107.4
C16—C15—C14	120.4 (3)	C30'—C29'—H29D	107.4
C16—C15—H15	119.8	C28—C29'—H29D	107.4
C14—C15—H15	119.8	H29C—C29'—H29D	107.0
C15—C16—C17	120.1 (3)	C31'—C30'—C29'	119.9 (18)
C15—C16—H16	120.0	C31'—C30'—H30C	107.4
C17—C16—H16	120.0	С29'—С30'—Н30С	107.4

C12C17C16	120.4 (3)	C31'—C30'—H30D	107.4
C12—C17—H17	119.8	C29'—C30'—H30D	107.4
С16—С17—Н17	119.8	H30C-C30'-H30D	106.9
C19—C18—C20	117.9 (2)	C30'—C31'—H31D	109.5
C19—C18—C3	113.1 (2)	C30'—C31'—H31E	109.5
C20-C18-C3	128.8 (2)	H31D-C31'-H31E	109.5
N2-C19-C18	127.6 (2)	C30'—C31'—H31F	109.5
N2-C19-S2	120.8 (2)	H31D-C31'-H31F	109.5
C18—C19—S2	111.7 (2)	H31E—C31'—H31F	109.5
O1—C20—N1	119.7 (2)	C21—N1—C20	122.8 (2)
O1—C20—C18	126.9 (3)	C21—N1—C22	119.5 (2)
N1-C20-C18	113.3 (2)	C20—N1—C22	117.2 (2)
N2—C21—N3	119.0 (3)	C21—N2—C19	114.1 (2)
N2—C21—N1	123.7 (3)	C21—N3—C28	124.7 (3)
N3—C21—N1	117.3 (2)	C21—N3—H3	117.6
C27—C22—C23	120.8 (3)	C28—N3—H3	117.6
C27—C22—N1	118.4 (2)	C5—S1—C1	99.07 (13)
C23—C22—N1	120.7 (2)	C19—S2—C4	91.32 (13)
C6—C1—C2—C3	-177.7 (3)	C19—C18—C20—N1	-1.5 (3)
S1—C1—C2—C3	-56.7 (3)	C3-C18-C20-N1	-176.3 (2)
C1—C2—C3—C4	22.9 (4)	C27—C22—C23—C24	-0.1 (5)
C1—C2—C3—C18	-155.1 (3)	N1-C22-C23-C24	179.8 (3)
C18—C3—C4—C5	178.1 (3)	C22—C23—C24—C25	-2.2 (5)
C2—C3—C4—C5	-0.1 (4)	C23—C24—C25—F1	-179.0 (3)
C18—C3—C4—S2	1.8 (3)	C23—C24—C25—C26	2.5 (6)
C2—C3—C4—S2	-176.4 (2)	C24—C25—C26—C27	-0.3 (6)
C3—C4—C5—C12	135.7 (3)	F1-C25-C26-C27	-178.8 (3)
S2—C4—C5—C12	-48.1 (3)	C23—C22—C27—C26	2.2 (5)
C3—C4—C5—S1	14.2 (4)	N1—C22—C27—C26	-177.6 (3)
S2—C4—C5—S1	-169.64 (14)	C25—C26—C27—C22	-2.0(5)
C2—C1—C6—C11	-136.7 (4)	N3—C28—C29—C30	65.7 (10)
S1—C1—C6—C11	100.8 (4)	C29'—C28—C29—C30	-2.7(19)
C2—C1—C6—C7	42.4 (4)	C28—C29—C30—C31	168.9 (12)
S1-C1-C6-C7	-80.0(4)	N3-C28-C29'-C30'	-173.1 (15)
C11—C6—C7—C8	-1.5 (6)	C29—C28—C29'—C30'	-50.5(16)
C1—C6—C7—C8	179.4 (4)	C28—C29'—C30'—C31'	122 (2)
C6-C7-C8-C9	-0.3(7)	N_{2} C21 N_{1} C20	7 0 (4)
C7 - C8 - C9 - C10	13(9)	$N_3 = C_2 I = N_1 = C_2 0$	-1715(3)
C8 - C9 - C10 - C11	-0.6(10)	N_{2} C21 N_{1} C22	-1654(3)
C7 - C6 - C11 - C10	2 2 (8)	N3-C21-N1-C22	16.1.(4)
C1 - C6 - C11 - C10	-1786(5)	01-C20-N1-C21	176.9(2)
C9-C10-C11-C6	-12(10)	C18 - C20 - N1 - C21	-47(3)
C4-C5-C12-C13	-555(4)	$01 - C_{20} - N_{1} - C_{22}$	-105(3)
S1-C5-C12-C13	67.8 (3)	C18 - C20 - N1 - C22	167.9 (2)
C4-C5-C12-C17	123 5 (3)	C_{27} C_{22} N_{1} C_{21}	74 6 (4)
S1-C5-C12-C17	-113 1 (3)	C_{23} C_{22} N_{1} C_{21}	-1053(3)
C_{17} C_{12} C_{13} C_{14}	-0.8 (5)	C_{27} C_{22} N_1 C_{20}	-983(3)
C_{2} C_{12} C_{13} C_{14}	178 3 (3)	C_{23} C_{22} N_{1} C_{20}	818(3)
C12 - C13 - C14 - C15	07(6)	N_{3} C_{21} N_{2} C_{19}	1763(3)
	0.7 (0)	1.5 021 1.2 017	1,0.5 (5)

C13-C14-C15-C16	-0.3 (7)	N1-C21-N2-C19	-2.2 (4)
C14—C15—C16—C17	-0.1 (7)	C18-C19-N2-C21	-4.7 (4)
C13-C12-C17-C16	0.5 (5)	S2-C19-N2-C21	175.6 (2)
C5-C12-C17-C16	-178.6 (3)	N2-C21-N3-C28	-1.8 (5)
C15-C16-C17-C12	0.0 (6)	N1-C21-N3-C28	176.8 (4)
C4—C3—C18—C19	-2.4 (3)	C29—C28—N3—C21	75.9 (6)
C2-C3-C18-C19	175.8 (3)	C29'—C28—N3—C21	104.4 (9)
C4—C3—C18—C20	172.6 (3)	C4—C5—S1—C1	-41.1 (2)
C2—C3—C18—C20	-9.2 (4)	C12—C5—S1—C1	-165.49 (19)
C20-C18-C19-N2	6.6 (4)	C6-C1-S1-C5	-170.4 (2)
C3—C18—C19—N2	-177.8 (2)	C2-C1-S1-C5	64.0 (2)
C20-C18-C19-S2	-173.70 (19)	N2-C19-S2-C4	179.0 (2)
C3—C18—C19—S2	2.0 (3)	C18—C19—S2—C4	-0.8 (2)
C19—C18—C20—O1	176.8 (3)	C3—C4—S2—C19	-0.6 (2)
C3—C18—C20—O1	1.9 (4)	C5—C4—S2—C19	-177.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C5—H5···N2 ⁱ	0.98	2.60	3.507 (4)	154
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

